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This was a parallel, double-blind, prospective, randomized, controlled trial

with the objective to assess the effect of a defined low-level cyclic loading on

the rate of orthodontic tooth movement. Overall, 45 orthodontic patients

were treated with fixed appliances at the UTHSC San Antonio Orthodontic

Department. Inclusion criteria were extraction of maxillary first premolars,

maximum maxillary posterior anchorage, and at least 3 mm of extraction

space after initial alignment. The enrolled subjects were randomized into two

groups, vibration (n ¼ 23) and control (n ¼ 22) using a third-party computer-

generated randomization schedule. All care providers, investigators, and

patients were blinded to intervention assignment. Cyclic loading was applied

to the vibration group for 20 min/day using the AcceleDents device, which

delivered a force of 0.25 N (25 g) at a frequency of 30 Hz. The control group

was assigned to the same protocol, but the device could not be activated to

vibrate. The average monthly rate of maxillary canine retraction into an

extraction space was analyzed in all 45 subjects (ITT group). The mean rate of

movement was significantly higher for the AcceleDents group with

1.16 mm/month (95% CI: 0.86–1.46) compared to 0.79 mm/month (95% CI:

0.49–1.09) in the control group, with the mean difference of 0.37 mm/month

(95% CI: 0.07–0.81, P ¼ 0.05). These results showed that low-level cyclic

loading of 0.25 N at 30 Hz increases the rate of toothmovement when applied

as an adjunct to orthodontic treatment. (Semin Orthod 2015; ]:]]]–]]].) & 2015

The Authors. Published by Elsevier Inc. All rights reserved.
Introduction

T he rate of tooth movement is an important
factor determining the duration of ortho-

dontic treatment. Physiologically, the rate of tooth
movement reflects the rates of bone turnover and
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remodeling. Earlier approaches that have been
used in an attempt to accelerate tooth movement
include low-energy laser irradiation,1 magnetic
fields,2 as well as pharmacological interventions
with the injection of prostaglandin E2

3 and
vitamin D.4 However, adverse events, such as
local pain and severe root resorption,5 were
associated with these treatments. Corticotomy-
facilitated orthodontics6 has limited clinical use
due to the morbidity of the surgery, cost, and
insufficient clinical evidence. Shorter treatment
time decreases risk of caries, periodontal disease,
and root resorption,7 but there has been little
progress in developing new, non-invasive
approaches to accelerate tooth movement and
to reduce the duration of treatment.8

Low-level mechanical oscillatory signals
(vibrations) have been shown to increase the rate
of remodeling in mechanical loaded long bones,9

which is currently used in the prevention of
osteoporosis10 based on an increase in bone
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metabolism and decrease in bone loss in post-
menopausal women.11 There is also compelling
evidence from animal studies using cranial suture
model12,13 and long bone periosteum14

suggesting that dynamic loading improves bone
formation and increases orthodontic tooth
movement compared to a static force.15 While
there is an emerging body of evidence that
vibration enhances orthodontic tooth movement
in animals, the effect of analogous level
vibrations on tooth movement in patients had
not been investigated. The aim of this study was
to determine whether a defined type of vibration,
as an adjunct to orthodontic treatment, increases
the rate of tooth movement in patients with fixed
orthodontic appliances.
Methods

This was a prospective, randomized, controlled,
double-blind, parallel group clinical trial con-
ducted at a single center in the United States.
Subject enrollment occurred from February 2009
through June 2010. Data analyzed included sub-
ject follow-up from the beginning of treatment
through the end of space closure. The null
hypothesis was that there was no statistically sig-
nificant difference in the rate of tooth movement
with standard orthodontic treatment alone (con-
trol group) compared with standard orthodontic
treatment plus the vibration applied for 20 min/
day (vibration group) by the AcceleDents device
(OrthoAccel Technologies, Inc., Bellaire, TX)
designed to deliver a cyclical (vibrational) force of
0.25 N (25 g) with a frequency of 30 Hz.

Sample size was determined based on an
expected movement rate of 0.24 mm/week in
the control group16 and a clinically relevant
increase over that baseline rate up to 0.35 mm/
week in the AcceleDents group, consistent with
results from an earlier pilot study.17 Using the
pilot study observed standard deviation of
0.10 mm/week, two-sided alpha (type I error)
of 0.05, and 80% power, a sample size of 16
subjects per group (total of 32) was required to
detect a statistically significant difference
between the groups. This sample yields 95%
probability to reveal at least one occurrence of all
adverse events that occur at a rate of 17.1% or
greater. The sample was increased to 45 subjects
to compensate for potentially larger number of
dropouts. The study was approved by the IRB and
written informed consent was obtained from
all subjects. Trial summary was published on
ClinicalTrials.gov. The study protocol was pre-
approved by the U.S. Food and Drug Admin-
istration (FDA) under an Investigational Device
Exemption (IDE-G080191).

Subjects inclusion criteria were age (12–40
years), required extraction of maxillary first pre-
molar(s), space closure with maximum maxillary
anchorage, 3 mm of extraction space after initial
alignment, and good oral hygiene. Subject
exclusion criteria were periodontal disease, pre-
scription medications, use of bisphosphonates,
and pregnancy. Subjects were randomly allocated
to either the AcceleDent group or the control
group that used an appliance with internally dis-
abled vibration. A third-party vendor provided a
computer-generated randomization schedule
with a block size of 4 and stratified to insure that
the number of subjects aged 12–19 years and aged
20–40 years, as well as the number of subjects with
“separate canine retraction” versus “en masse
retraction” were equally distributed between the
groups. Each subject was assigned to the next of
the 48 pre-specified numbers for four strat-
ification combinations and the allocation key was
kept locked outside the clinic. The device was
programmed to the assigned treatment by inde-
pendent site personnel and both the investigators
and the subjects remained blinded to treatment.

All subjects were treated by orthodontic resi-
dents under supervision of an investigator/faculty.
A routine set of orthodontic records was taken. A
0.022 � 0.028 in twin brackets (MBT, 3M Unitek,
St. Paul, MN) were bonded and the use of
AcceleDents started from the beginning of
treatment. Patient compliance with the device was
tracked using a logbook. After initial alignment, a
mini-implant was inserted18 and immediately
loaded with 180 g of force (Fig. 1), which
produced a predominantly translatory canine
movement, thus avoiding an unstable posterior
dental anchorage that would compromise
accurate measurements.19 To avoid excessive
occlusal interferences, the bite was opened
when necessary using composite build-ups. Sepa-
rate canine retraction was performed on a
0.018 in stainless steel (SS) arch wire and enmasse
retraction with a 0.019 � 0.025 SS arch wire.

Direct measurement of space closure in
patients’ mouth precludes the analysis of intra-
rater error at the same appointment. Thus, the
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Figure 1. (A) Orthodontic appliance for separate canine retraction: C, canine being retracted; T, TAD (Tomas-
pin, Dentaurum, Ispringen, Germany) with a diameter of 1.6 mm and a length of 9 mm was inserted between the
maxillary second premolar and the first molar, under local anesthetic and was immediately loaded; F, retraction
force of 180 g (measured by Dontrixs gauge, American Orthodontics, Sheboygan, Wisconsin) was applied with a
nickel-titanium coil spring between the TAD and the canine bracket; d, distance measured parallel to the occlusal
plane using a digital caliper prior to each coil spring activation or reactivation. An average value from two
measurements was entered at each visit, which were approximately 4 weeks apart. The spring was truncated as
needed and re-tied to deliver 180 g of force. (B) Representative example of retraction mechanics for space closure.
(a) Activated coil spring in place at the beginning of space closure. (b) One month later, the space opened mesial
to the canine.
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intra-rater and inter-rater reliability was tested by
making measurements on 12 different quadrants
of typodonts with mounted mini screws and
bonded brackets. The intra-rater reliability was
tested for each rater 1 and rater 2 by comparing
repeated measurements with a 1-week interval
between them, and the inter-rater reliability was
tested by comparing the average of the assess-
ments of two independent raters who each
conducted two assessments of each quadrant.
Intraclass correlation coefficients (ICCs) were
calculated with ICC model 2.1 for intra-rater
reliability and ICC model 2.2 for inter-rater
reliability.

As a primary outcome measure, the average
monthly rates of tooth movement in the Acce-
leDent and control groups were analyzed for the
intent-to-treat (ITT) and the per-protocol (PP)
treatment populations, using a general linear
model that accounted for age (12–19 versus 20–
40 years), gender, and type of retraction. The
monthly rate of tooth movement was calculated
for each subject and each quadrant by calculating
the total distance the cuspid moved, while the
TAD was stable and dividing it by the total length
of time that the TAD was stable during the space
closure. If any level of TAD mobility was
observed, it was considered loose and the last
month’s measurement was excluded. If a TAD
continued to fail after two attempts of re-
insertion in the proximity of the original site,
the measurements were discontinued (Fig. 2).
The subject’s data were included in the analysis if
there were at least three consecutive stable TAD
measurements recorded.
Results

Baseline demographic and clinical characteristics
analysis showed that there was no difference
between the AcceleDent and control groups with
respect to age, ethnicity, or weight. Of 45 subjects
enrolled in the study (ITT group), 39 were
represented in the PP group (Fig. 2). Six subjects
were excluded from the PP group for the
following reasons: pregnancy (n ¼ 1),
extraction space less than 3 mm after initial
alignment (n ¼ 1), and no stable TAD
distance measurements [TAD failure due to
poor oral hygiene (n ¼ 4)]. The retraction was



Figure 2. Patient flow diagram (CONSORT format) describing subjects enrolled and included in analyses.
The number of subjects excluded from analysis in each group (listed in the Analysis—PP boxes) does not
correspond to the total number of lost to follow-up and discontinued intervention subjects (listed in the Follow-
Up boxes). This is because some of the subjects with discontinued intervention had fulfilled the requirement of
at least three consecutive measurements being taken prior to discontinuation, thus remaining in the
analysis group.
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bilateral in 35 patients, and an average rate was
calculated for each subject. The canine moved by
translation, as demonstrated by the reversal lines
in bone and mathematical analysis (Fig. 3). The
results of the error analysis showed that the ICC
was 0.98 for rater 1 (95% CI: 0.93–0.99), 0.96 for
rater 2 (95% CI: 0.87–0.99), and the ICC for the
average assessments between the two raters was
0.94 (95% CI: 0.80–0.98), indicating that there
was no significant intra-rater and inter-rater dif-
ferences that biased the tooth movement
measurements.
The ITT analysis of the primary outcome is
presented in the Table. The average monthly
rate of tooth movement in the AcceleDent group
was 1.16 mm/month (95% CI: 0.86–1.46), which
was significantly faster (48.1 � 7.1%) compared
to 0.79 mm/month (95% CI: 0.49–1.09) in the
control group, with the mean difference of
0.37 mm/month (95% CI: 0.07–0.81, P ¼
0.05). The PP analysis also demonstrated
significantly faster movement of the retracting
cuspids when vibration was applied (P ¼ 0.02,
Table). The emphasis in interpretation of the



Figure 3. Representative panoramic radiograph during space closure. R, the reversal lines at the mesial aspects of
distally moved canines. These lines, which indicate the onset of new bone formation on the tension side of the
periodontium, are parallel with the outline of the root surface, indicating predominantly translational movement.
With the difference of 0.004 in between the slot size and wire diameter and the mesio-distal bracket width 0.125 in,
the tipping component during closing of 5.3 mm (the average extraction space size in this study) was minimal and
clinically insignificant, resulting in almost pure translational movement with the center of rotation at 9.48 m above
the canine root apex. Translational tooth movement resulted in uniform, non-traumatic stress levels across the
periodontium, thus eliminating excessive stresses in the apical and coronal regions.
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results is placed on the ITT analysis to minimize
bias in assessing the primary outcome. After
enrollment and randomization, some subjects
were withdrawn from the ITT group for various
reasons and excluding these subjects could
introduce a bias in statistical analysis.

The most common adverse side effect in both
groups was loosening of TADs, which was
reported in three subjects in the AcceleDent
group and two subjects in the control group. A
TAD was considered loose if any detectable level
of mobility was observed clinically. Additional
harms/safety-related outcomes analyzed in this
study included the effect of vibration on root
resorption and other potential harmful effects
(such as pain, discomfort, and headache), as
well as subjects’ perception of the ease of use of
the device. Because of space limitations, the
results of these outcomes will be reported
elsewhere (manuscript in preparation). These
outcomes generally indicated that the Accele-
Dents is safe and convenient for patients’
daily use.
Table. Average rate (mm/month) of tooth movement du

ITTa P

Treatment Mean (SE) 95% CI P value T

AcceleDent (N ¼ 23) 1.16 (0.153) 0.86–1.46 A
Control (N ¼ 22) 0.79 (0.150) 0.49–1.09 C
Mean difference 0.37 (0.217) �0.07 to 0.81 0.05 M

aP values for the individual covariates included in the general linea
0.093 (gender). Corresponding P values for PP were 0.88 (age),
Discussion

The design of this study and the mechanics used
maximized the reproducibility of orthodontic
force application and measurement of tooth
movement, while minimizing the variables asso-
ciated with the loss of posterior anchorage. A
recent systematic review20 revealed lack of quality
randomized clinical trials that would allow for an
evidence-based approach in clinical use of
techniques for accelerated tooth movement. The
present study fully adheres to the CONSORT
guidelines and CONSORT 2010 checklist21 for
conducting and reporting randomized clinical
trials and provides evidence for the positive effect
of cyclic loading on the rate of orthodontic tooth
movement.

Relatively constant and reproducible retrac-
tion force of 180 g was used, reported to be
within an optimal range for canine retraction.22

The sliding mechanics produced a translatory
canine movement23 with a negligible component
of tipping (Fig. 3). The applied force level of
ring space closure.

Pa

reatment Mean (SE) 95% CI P value

cceleDent (N ¼ 21) 1.25 (0.117) 1.01–1.49
ontrol (N ¼ 18) 0.89 (0.118) 0.63–1.15
ean difference 0.36 (0.181) �0.01 to 0.73 0.02

r model for ITT were 0.97 (age), 0.28 (type of retraction), and
0.02 (type of retraction), and 0.03 (gender).
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0.25 N represents an approximately 70-fold
reduction of the level of 18 N used in clinical
trials in patients with osteoporosis,24 and it is
based on the difference in the mass of the maxilla
compared to the whole skeleton (since no similar
studies applying pre-defined levels of cyclic force
to the alveolar bone have been reported). The
0.25 N force imposes peak to peak accelerations
of less than 0.003 g (1 g ¼ earth’s gravitational
field), which is over 300 times lower than the
level of 1 g demonstrated to be safe and not
produce any detrimental skeletal resonances.24

This extremely low force did not produce any
significant discomfort or adverse effects for the
patients. The monthly rate of canine retraction
for the control group was 0.79 mm/month,
which compares favorably with earlier
reports.16,25 The effect of vibrations in the
AcceleDent group was 48.1% above this estab-
lished baseline value, which demonstrates a sig-
nificant clinical benefit. The results from analysis
of harms and safety-related outcomes showed
that the AcceleDents is safe and convenient for
patient’s use.

A recent study using the Tooth Masseuse
device in orthodontic patients26 reported no
effect on the rate of tooth movement. This is
contrary to our results, and those from medical
clinical trials and animal models, most likely
because the Tooth Masseuse was never
intended or designed to accelerate tooth
movement: its output frequency is four times
higher compared to our study, while the force is
about four times lower. Another study reported
that micro-osteoperforation increased the tooth
movement by 2.3-fold, measured during the
period of initial 28 days of canine retraction
into a first bicuspid extraction space.27 These
results are consistent with studies using other
invasive procedures, such as corticotomy6 and
similar surgical interventions. A recent
systematic review and meta-analysis (which
did not include vibration) revealed some evi-
dence for effectiveness of low laser therapy and
corticotomy and only a weak or no evidence for
the effectiveness of interseptal bone reduction,
photobiomodulation, and pulsed electro-
magnetic fields.28

While loosening or potential drift of some
TADs cannot be excluded, it is important to note
that only a relatively small number of subjects
had TAD failures, which were distributed
similarly between the groups (three in the
AcceleDent, two in the control), with an overall
failure rate of 11.1% that is smaller than the
reported average TAD failure rate of 13.5%.29

Furthermore, the loading conditions in the
present study were markedly different from the
single study where a total average drift of 0.4 mm
(0.044 mm/month) was reported in seven out of
16 patients over the course of 9 months of space
closure, using an excessive retraction force of
400 g per side.30 The accuracy of our technique,
using a TAD as a reference point, has advantage
over most other techniques (e.g., using the
palatal rugae or an adjacent tooth that can
move being pulled by trans-septal fibers), since
it avoids several intermediate steps in making a
cast and its 2-D image and overlying a grid or
drawing lines, with each step introducing addi-
tional errors. Measuring space closure from lat-
eral cephalograms can introduce considerable
magnification, angulation, and landmark recog-
nition errors. Using casts and custom reference
templates is more accurate method for measur-
ing 3-D tooth movement31,32 that is particularly
suitable for space closure by segmented arch
technique where canine is not engaged into an
arch wire, and its side effects are difficult to
control. Employing sliding mechanics with a tight
bracket-wire interface in this study minimized a
chance for the second order tipping, rotational,
and vertical displacements. This allowed us to use
a direct, highly reproducible, and accurate one-
step measuring technique and focus on the effect
of vibration on a single, reproducible type of
tooth movement—the translation of canine
during space closure.

Vibrational loading stimulates bone remod-
eling,9,10 but the biological mechanism under-
lying this effect is not understood. Mechanical
loading initiates signaling pathways in bone33,34

and osteocytes were identified as mechano-
responsive cells during orthodontic tooth
movement,35 in which signals can be triggered by
fluid shear stress, bone microfractures, or bone
bending, all of which occur during vibrations.
Early responses in osteocytes are followed by
differentiation of osteoblasts36 and stimulation of
other bone genes.37 Future studies should
address the question whether cyclic loading, as
an adjunct to orthodontic stress, activates known
or new signaling pathways underlying the faster
tooth movement.
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Conclusion

The application of cyclic loading (vibration) of
0.25 N (25 g) at the frequency of 30 Hz, as an
adjunct to treatment with a fixed orthodontic
appliance, significantly increases the rate of
orthodontic tooth movement.
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